本文介绍了无监督的联合学习框架FEDX。我们的模型从分散和异质的局部数据中学习无偏的表示。它采用对比度学习作为核心组件的双面知识蒸馏,使联合系统可以在不要求客户共享任何数据功能的情况下运行。此外,它的适应性体系结构可以用作联合设置中现有无监督算法的附加模块。实验表明,我们的模型可显着提高五种无监督算法的性能(1.58--5.52pp)。
translated by 谷歌翻译
分配和验证国际公认的商品代码(HS编码)的任务是贸易货物的是海关办公室的关键职能之一。这一决定对于进口商和出口商至关重要,因为它决定了关税率。但是,类似于法官作出的法院决定,即使对于经验丰富的海关官员,任务也可能是非琐碎的。目前的论文提出了一个深入的学习模式,以协助这一看似挑战HS代码分类。与韩国海关服务一起,我们建立了基于科电的决策模型,该决策模型建议了HS代码的最有可能的标题和副标题(即,前四位和六位数)。在129,084件之前的情况下评估显示,我们模型的前3个建议在分类265个副标题方面的准确性为95.5%。这个有希望的结果意味着算法可以通过协助HS代码分类任务来减少海关官员所采取的时间和精力。
translated by 谷歌翻译
我们介绍韩语了解评估(KLUE)基准。 Klue是8个韩国自然语言理解(nlu)任务的集合,包括主题分类,语言典的相似性,自然语言推断,命名实体识别,关系提取,依赖解析,机器阅读理解和对话状态跟踪。我们从各种源语料库中展开的所有任务,同时尊重版权,以确保任何没有任何限制的人的可访问性。考虑到道德考虑,我们仔细设计了注释协议。随着基准任务和数据,我们为每个任务提供适用的评估指标和微调配方,为每项任务进行预训练语言模型。我们还释放了预用的语言模型(PLM),Klue-Bert和Klue-Roberta,以帮助在KLUE上再现基线模型,从而促进未来的研究。我们通过拟议的Klue基准套件从初步实验中进行了一些有趣的观察,已经证明了这款新的基准套件的有用性。首先,我们找到了klue-roberta-mantring的其他基线,包括多语种plms和现有的开源韩国plms。其次,即使我们从预先预测语料库中取代个人身份信息,我们也会看到性能下降最小,这表明隐私和NLU能力并不彼此可能。最后,我们发现,使用BPE标记与语素级预象的组合,在涉及语素级标记,检测和发电的任务中是有效的。除了加速韩国人NLP研究外,我们的创建Klue的全面文件将有助于将来为其他语言创建类似的资源。 klue在https://klue-benchmark.com上提供。
translated by 谷歌翻译
异常检测旨在识别来自正常数据分布的异常情况。该领域已经取得了许多进展,包括创新使用无监督的对比学习。然而,现有方法通常假设清洁训练数据,并且当数据包含未知异常时受限。本文介绍了一种新型半监督异常检测方法,统一了与无监督的对比学习的能源的模型的概念。 ELSA通过基于新能量函数的精心设计的微调步骤灌输对任何数据污染的鲁棒性,这些步骤迫使正常数据分为原型的类别。多种污染方案的实验表明,所提出的模型实现了SOTA性能。广泛的分析还验证了每个组件在所提出的模型中的贡献。除了实验之外,我们还提供了一种理论解释,对何对象学习独自无法检测到数据污染下的异常。
translated by 谷歌翻译
The automated segmentation and tracking of macrophages during their migration are challenging tasks due to their dynamically changing shapes and motions. This paper proposes a new algorithm to achieve automatic cell tracking in time-lapse microscopy macrophage data. First, we design a segmentation method employing space-time filtering, local Otsu's thresholding, and the SUBSURF (subjective surface segmentation) method. Next, the partial trajectories for cells overlapping in the temporal direction are extracted in the segmented images. Finally, the extracted trajectories are linked by considering their direction of movement. The segmented images and the obtained trajectories from the proposed method are compared with those of the semi-automatic segmentation and manual tracking. The proposed tracking achieved 97.4% of accuracy for macrophage data under challenging situations, feeble fluorescent intensity, irregular shapes, and motion of macrophages. We expect that the automatically extracted trajectories of macrophages can provide pieces of evidence of how macrophages migrate depending on their polarization modes in the situation, such as during wound healing.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
This paper proposes a new regularization algorithm referred to as macro-block dropout. The overfitting issue has been a difficult problem in training large neural network models. The dropout technique has proven to be simple yet very effective for regularization by preventing complex co-adaptations during training. In our work, we define a macro-block that contains a large number of units from the input to a Recurrent Neural Network (RNN). Rather than applying dropout to each unit, we apply random dropout to each macro-block. This algorithm has the effect of applying different drop out rates for each layer even if we keep a constant average dropout rate, which has better regularization effects. In our experiments using Recurrent Neural Network-Transducer (RNN-T), this algorithm shows relatively 4.30 % and 6.13 % Word Error Rates (WERs) improvement over the conventional dropout on LibriSpeech test-clean and test-other. With an Attention-based Encoder-Decoder (AED) model, this algorithm shows relatively 4.36 % and 5.85 % WERs improvement over the conventional dropout on the same test sets.
translated by 谷歌翻译
Affect understanding capability is essential for social robots to autonomously interact with a group of users in an intuitive and reciprocal way. However, the challenge of multi-person affect understanding comes from not only the accurate perception of each user's affective state (e.g., engagement) but also the recognition of the affect interplay between the members (e.g., joint engagement) that presents as complex, but subtle, nonverbal exchanges between them. Here we present a novel hybrid framework for identifying a parent-child dyad's joint engagement by combining a deep learning framework with various video augmentation techniques. Using a dataset of parent-child dyads reading storybooks together with a social robot at home, we first train RGB frame- and skeleton-based joint engagement recognition models with four video augmentation techniques (General Aug, DeepFake, CutOut, and Mixed) applied datasets to improve joint engagement classification performance. Second, we demonstrate experimental results on the use of trained models in the robot-parent-child interaction context. Third, we introduce a behavior-based metric for evaluating the learned representation of the models to investigate the model interpretability when recognizing joint engagement. This work serves as the first step toward fully unlocking the potential of end-to-end video understanding models pre-trained on large public datasets and augmented with data augmentation and visualization techniques for affect recognition in the multi-person human-robot interaction in the wild.
translated by 谷歌翻译
Training agents via off-policy deep reinforcement learning (RL) requires a large memory, named replay memory, that stores past experiences used for learning. These experiences are sampled, uniformly or non-uniformly, to create the batches used for training. When calculating the loss function, off-policy algorithms assume that all samples are of the same importance. In this paper, we hypothesize that training can be enhanced by assigning different importance for each experience based on their temporal-difference (TD) error directly in the training objective. We propose a novel method that introduces a weighting factor for each experience when calculating the loss function at the learning stage. In addition to improving convergence speed when used with uniform sampling, the method can be combined with prioritization methods for non-uniform sampling. Combining the proposed method with prioritization methods improves sampling efficiency while increasing the performance of TD-based off-policy RL algorithms. The effectiveness of the proposed method is demonstrated by experiments in six environments of the OpenAI Gym suite. The experimental results demonstrate that the proposed method achieves a 33%~76% reduction of convergence speed in three environments and an 11% increase in returns and a 3%~10% increase in success rate for other three environments.
translated by 谷歌翻译